Abstract
We present modeled ion distributions in the near-Earth magnetotail expected to be associated with high latitude pitch angle isotropization. The model consists of a magnetic field reversal and a plasma source such that particles have a ratio of the minimum field line curvature radius to maximum gyroradius near unity, a nonadiabatic regime. For precipitating particles observed at the edge of the field reversal, we find structuring in the ion distribution consisting of peaks and valleys in the pitch angle distribution, particularly for intermediate values of field line curvature, which is consistent with the near-Earth tail region. The structures are non-Maxwellian and not gyrotropic. They are resolvable by instruments such as the GEOTAIL spacecraft CPI detector and can be used as a remote sensing method for fields in this regime between adiabatic motion and current sheet motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Atmospheric and Solar-Terrestrial Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.