Abstract

The zero-field splitting (ZFS) of a model monometallic Mn(III) complex is theoretically studied as function of a systematic symmetry lowering. First, we treat the octahedral case for which the standard S.D.S model Hamiltonian cannot be applied due to a zero-field splitting in the absence of anisotropy induced by the spin-orbit coupling between the two spatial components of the (5)E(g) state at second-order of perturbation. Next, the symmetry is lowered to D(4h) and D(2h) and the anisotropic spin Hamiltonian is extracted using effective Hamiltonian theory. A simple relation is derived between the ratio E//D/ and the applied rhombic and axial distortions. Moreover, it is shown that close to O(h) symmetry, the orbital mixing due to spin-orbit coupling can be accurately described with Stevens fourth-order operators. The calculated tendencies are interpreted within a refined Racah plus ligand field model and it is shown that the ZFS parameters in Mn(III) complexes follow special rules that are nonintuitive compared to other d(n) configurations. Finally, some angular distortions are applied to study their effect on the anisotropy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.