Abstract

The radical pair mechanism is a canonical model for the magnetosensitivity of chemical reaction processes. The key ingredient of this model is the hyperfine interaction that induces a coherent mixing of singlet and triplet electron spin states in pairs of radicals, thereby facilitating magnetic field effects (MFEs) on reaction yields through spin-selective reaction channels. We show that the hyperfine interaction is not a categorical requirement to realize the sensitivity of radical reactions to weak magnetic fields. We propose that, in systems comprising three instead of two radicals, dipolar interactions provide an alternative pathway for MFEs. By considering the role of symmetries and energy level crossings, we present a model that demonstrates a directional sensitivity to fields weaker than the geomagnetic field and remarkable spikes in the reaction yield as a function of the magnetic field intensity; these effects can moreover be tuned by the exchange interaction. Our results further the current understanding of the effects of weak magnetic fields on chemical reactions, could pave the way to a clearer understanding of the mysteries of magnetoreception and other biological MFEs and motivate the design of quantum sensors. Further still, this phenomenon will affect spin systems used in quantum information processing in the solid state and may also be applicable to spintronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.