Abstract
AbstractWe present results of the simulation of a magneto-rotational supernova explosion. We show that, due to the differential rotation of the collapsing iron core, the magnetic field increases with time. The magnetic field transfers angular momentum and a MHD shock wave forms. This shock wave produces the supernova explosion. The explosion energy computed in our simulations is 0.5-2.5 ċ 1051erg. We used two different equations of state for the simulations. The results are rather similar.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Astronomical Union
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.