Abstract

The results of investigation of colossal magnetoresistance relaxation in nanostructured La-Sr(Ca)-Mn-O films upon removal of magnetic field pulse are presented. Thin films having thicknesses of 75-350 nm grown by pulsed injection metal-organic chemical vapor deposition technique were studied in pulsed magnetic fields having duration of 0.9 ms and amplitudes of 2-12 T. It was obtained that “fast” relaxation process occurring in hundred microseconds time scale exhibits anisotropy: the magnitude of remnant resistivity is approximately three times smaller and the process is faster when magnetic field is applied perpendicular to the film plane in comparison with in-plane direction. The dynamics of this relaxation process was analyzed using Kolmogorov-Avrami-Fatuzzo model, taking into account nucleation and reorientation of magnetic domains into equilibrium state. The “fast” remnant relaxation was not observed after the application of longer pulses (20 ms) having amplitude of 60 T. Influence of remnant relaxation on operation of B-scalar magnetic field sensors based on nanostructured manganite films is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.