Abstract
One of the most prominent and effective applications of graphene in the field of spintronics is its use as a spacer layer between ferromagnetic metals in vertical spin valve devices, which are widely used as magnetic sensors. The magnetoresistance in such devices can be enhanced by a selection of suitable spacer materials and proper fabrication procedures. Here, we report the use of dry-transferred single- and double-layer graphene, grown by chemical vapor deposition (CVD), as the spacer layer and the fabrication procedure in which no photo-resist or electron-beam resists is used. The measured maximum magnetoresistance of NiFe/CVD-Graphene/Co junction is 0.9% for the single- and 1.2% for the double-layer graphene at 30 K. The spin polarization efficiency of the ferromagnetic electrodes is about 6.7% and 8% for the single- and the double-layer graphene, respectively, at the same temperature. The bias-independent magnetoresistance rules out any contamination and oxidation of the interfaces between the ferromagnet and the graphene. The magnetoresistance measured as a function of tilted magnetic field at different angles showed no changes in the maximum value, which implies that the magnetoresistance signal is absent from anisotropic effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.