Abstract

Solar prominence models used so far in the analysis of MHD waves in such structures are quite elementary. In this work, we calculate numerically magnetohydrostatic models in two-dimensional configurations under the presence of gravity. Our interest is in models that connect the magnetic field to the photosphere and include an overlying arcade. The method used here is based on a relaxation process and requires solving the time-dependent nonlinear ideal MHD equations. Once a prominence model is obtained, we investigate the properties of MHD waves superimposed on the structure. We concentrate on motions purely two-dimensional neglecting propagation in the ignorable direction. We demonstrate how by using different numerical tools we can determine the period of oscillation of stable waves. We find that vertical oscillations, linked to fast MHD waves, are always stable and have periods in the 4-10 min range. Longitudinal oscillations, related to slow magnetoacoustic-gravity waves, have longer periods in the range of 28-40 min. These longitudinal oscillations are strongly influenced by the gravity force and become unstable for short magnetic arcades.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.