Abstract

The oscillatory characteristics of magnetoconductance for a junction composed of a superconductor and a semiconductor, in which two parallel quantum wave guides are coupled with each other through a potential barrier layer, are studied systematically. To model the imperfectness of the interface, we introduce a $\delta-$ function scattering potential barrier lying close to the interface of the junction. The magnetoconductance oscillations (MCO) in this system stem from two sources: one is the interference of wave functions of quasi-particles due to multiple Andreev reflections at the interface; the other is attributed to the variation of the number of the propagation modes when introducing the isolating barrier layer. The introduction of the isolating layer in the quantum wave-guides strongly modifies MCO. We also present a physical picture for the MCO based on a phenomenological argument. The theoretically fitted results are in good agreement with numerical ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.