Abstract

This work is concerned with the nature of ferromagnetic resonance (FMR) under the influence of acoustic oscillations with the same frequency as FMR. Here we provide the theoretical model for ME coupling at FMR in the nanopillars of ferrite in a piezoelectric matrix. Our calculations show that magnification of ME coefficient is obtained at the magnetoacoustic resonance (MAR) region where FMR and acoustic oscillations at electromechanical resonance (EMR) overlap. The clamping effect of the substrate for nanopillars is considered in determining the ME voltage coefficient. In addition, nanostructures based on single crystal ferrites take on special significance as magnetic resonance line width of such materials may be narrow enough to enable the observation of effects connected with magnetoelastic interaction. As an example, ME coefficient is estimated for the nanopillars of yttrium iron garnet in lead zirconate titanate matrix. The phenomenon is of importance for the realization of multifunctional ME nanosensors/transducers operating at microwave frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.