Abstract

The magneto-transport properties of cubic NiMnAs film epitaxied on the GaAs (110) substrate are investigated. The x-ray diffraction measurements reveal that the NiMnAs (111) crystal plane is parallel to the GaAs (110) crystal plane. The temperature dependence of resistivity at high temperature can be described by a thermal activation model, from which the thermal activation energy is obtained and found to be comparable with many other Heusler alloys. By fitting the temperature dependence of resistivity at low temperature, the coefficient of the quadratic temperature term is determined to be 1.34 × 10−3 μΩ cm K−2. This value suggests the possible presence of single-magnon scattering in the NiMnAs film. The negative magnetoresistance is attributed to the suppression of the spin-dependent scattering, which would not take place in a half-metal. The angle dependence of the anisotropic magnetoresistance (AMR) is measured, and the AMR ratios are positive even at low temperature. These magneto-transport properties indicate that the predicted half-metallicity is destroyed in the NiMnAs film. The absence of the half-metallicity may be attributed to the atomic disorder in the NiMnAs lattice, which needs to be confirmed by further experimental and theoretical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.