Abstract
The magneto-plasma sail (mini-magnetospheric plasma propulsion) produces the propulsive force due to the interaction between the artificial magnetic field around the spacecraft inflated by the plasma and the solar wind erupted from the Sun with a speed of 300–800 km/s. The principle of the magneto-plasma sail is based on the magnetic sail whose original concept requires a huge mechanical coil structure, which produces a large magnetic field to capture the energy of the solar wind. Meanwhile in the case of the magneto-plasma sail, the magnetic field will be expanded by the inertia of plasma flow to a few tens of kilometer in diameter, resulting in a thrust of a few Newton R. Winglee's group of the University of Washington originally proposed the idea of magnetic field inflation by the plasma. This paper investigates the characteristics of the magneto-plasma sail by comparing it with the other low-thrust propulsion systems (i.e., electric propulsion and solar sail), and the potential of its application to near future outer planet missions is studied. Furthermore, an engineering validation satellite concept is proposed in order to confirm the propulsion system specification and operation methodology. The main features are summarized as: (1) The satellite mass is around 180 kg assuming the H-IIA piggyback launch. (2) Since the magnetopause of the Earth magnetosphere is about 10 Re at Sun side and the bow shock is located at about 13 Re from the Earth, the satellite is injected into an orbit with 250 km perigee altitude and 20 Re apogee distance where apogee is located at the Sun side. (3) The magneto-plasma sail is turned on only in the vicinity of apogee outside the Earth's magnetosphere. (4) The thrust is estimated by the orbit determination result, and the plasma wind monitor is installed on the satellite to establish the relationship between the solar wind and the thrust.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.