Abstract

We determine the baryon spectrum of 1 + 1 + 1-flavor QCD in the presence of strong background magnetic fields using lattice simulations at physical quark masses for the first time. Our results show a splitting within multiplets according to the electric charge of the baryons and reveal, in particular, a reduction of the nucleon masses for strong magnetic fields. This first-principles input is used to define constituent quark masses and is employed to set the free parameters of the Polyakov loop-extended Nambu-Jona-Lasinio (PNJL) model in a magnetic field-dependent manner. The so constructed model is shown to exhibit inverse magnetic catalysis at high temperatures and a reduction of the transition temperature as the magnetic field grows — in line with non-perturbative lattice results. This is contrary to the naive variant of this model, which gives incorrect results for this fundamental phase diagram. Our findings demonstrate that the magnetic field dependence of the PNJL model can be reconciled with the lattice findings in a systematic way, employing solely zero-temperature first-principles input.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.