Abstract
Amorphous magnetic microwires are novel materials, which are characterized by the unique magnetic properties. Their magnetization process runs through the depining and subsequent propagation of the single-domain wall. This allows us to study the magnetization processes of the single-domain wall either in static (when the domain wall lies in its potential) or dynamic (when the domain wall propagates along the wire) mode. In the given work, we present surprising results that were found during the single-domain wall switching and propagation in microwires. The negative critical propagation field during the propagation of the single-domain wall in microwires has been found. Moreover, new contribution (based on the structural relaxation) to the domain wall damping during its propagation in microwire was found. The complex shape of the single-domain wall potential, which consists of two contributions, has been found in microwires. The magnetoelastic one coming from the magnetoelastic interaction of the domain wall with the stresses applied on microwires and the stresses introduced during the microwire's production and stabilization one coming from the structural relaxation on atomic level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.