Abstract

Metallic heterostructure as promising terahertz (THz) spintronic emitters has promoted the development of both spintronics and THz science. However, the underlying physics at the metallic interface, such as the nonlinear optical effect, remains unclear. Herein, we present interface magnetization induced THz generation from metallic heterostructure consisting of Heusler alloy CoFeMnSi (CFMS) and Pd thin films. THz generation is ascribed to 35% contribution from the magnetization-induced optical rectification (MOR) and 65% contribution from inverse spin Hall effect (ISHE) based on the pump polarization and sample azimuthal angle dependent measurement. Furthermore, the contribution ratio of the MOR decreases to 12% via lowering the CFMS grown temperature, which is due to the reduced crystalline quality and possible metal to semiconductor transformation in CFMS. Our results not only clarify MOR and ISHE in metallic heterostructure for the scientific field, but they also benefit THz source optimization for the technology field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.