Abstract
Recent developments in the magnetization dynamics in spin textures, particularly skyrmions, offer promising new directions for magnetic storage technologies and spintronics. Skyrmions, characterized by their topological protection and efficient mobility at low current density, are increasingly recognized for their potential applications in next-generation logic and memory devices. This study investigates the dynamics of skyrmion magnetization, focusing on the manipulation of their topological states as a basis for bitwise data storage through a modified Landau-Lifshitz-Gilbert equation (LLG). We introduce spin-polarized electrons from a topological ferromagnet that induce an electric dipole moment that interacts with the electric gauge field within the skyrmion domain. This interaction creates an effective magnetic field that results in a torque that can dynamically change the topological state of the skyrmion. In particular, we show that these torques can selectively destroy and create skyrmions, effectively writing and erasing bits, highlighting the potential of using controlled electron injection for robust and scalable skyrmion-based data storage solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of physics. Condensed matter : an Institute of Physics journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.