Abstract

Magnetism in man made ultra-thin materials has become an area of intense activity and excitement, mainly driven by applications in magnetic recording. For the purpose of high-density magnetic recording, the understanding and control of the magnetic properties, such as complex magnetic ordering, enhanced magnetic moments, magneto-crystalline anisotropy and magnetostriction are desired. In this paper, we present results of magnetism and magnetic anisotropy in ferromagnetic NiFe thin film, antiferromagnetic NiMn and their interface determined from first-principles FLAPW (full-potential linearized augmented plane wave) calculations, and demonstrate how their properties behave sensitively on the environment (such as in bulk, at surfaces or interfaces). These results may be important for understanding exchange bias materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.