Abstract

Merger of a white dwarf binary creates a differentially rotating object which is expected to generate strong magnetic fields. Kinetic energy stored in differential rotation is partially dissipated in the magnetically dominated corona, which forms a hot variable outflow with ejection velocity comparable to $10^9$ cm s$^{-1}$. The outflow should carry significant mass and energy for hours to days, creating an expanding fireball with the following features. (i) The fireball is initially opaque and its internal energy is dominated by the trapped thermal radiation. The stored heat is partially converted to kinetic energy of the flow (through adiabatic cooling) and partially radiated away. (ii) Internal shocks develop in the fireball and increase its radiative output. (iii) A significant fraction of the emitted energy is in the optical band. As a result, a bright optical transient with luminosity $L\sim 10^{41}-10^{42}$ erg s$^{-1}$ and a characteristic peak duration comparable to 1 day may be expected from the merger. In contrast to classical novae or supernovae, the transient does not involve nuclear energy. The decay after its peak reflects the damping of differential rotation in the merger remnant. Such outbursts may be detected in the local Universe with current and upcoming optical surveys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.