Abstract

AbstractUnidirectional switching of the magnetic vortex core can be achieved in micron‐sized ferromagnetic platelets by excitation of the gyrotropic mode of the vortex structure with in‐plane rotating magnetic fields. Circulating fields with a switchable sense of rotation (clockwise, CW or counter clockwise, CCW) have been generated on a micrometer length scale at frequencies up to 1 GHz by two orthogonal electric RF currents with 90° phase shift flowing through crossed but not isolated striplines. Decoupling of these currents is realized by balanced symmetric RF sources. The amplitudes of the rotating magnetic fields and their spatial distributions are calculated and the stripline geometry is discussed. By taking advantage of this technique, unidirectional vortex core reversal by excitation with CW or CCW rotating magnetic fields has been observed by time resolved scanning transmission X‐ray microscopy. An area with reversed magnetization, the “dip,” was observed near the vortex core before vortex core reversal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.