Abstract

The magnetic transition, transport properties, and magnetic domain structures of the polycrystalline Mn1.9Fe1.1Sn compound with a hexagonal structure have been investigated. The result shows that ferromagnetic and antiferromagnetic phases coexist in this compound. A large topological Hall effect up to 3.5 μΩ·cm at 50 K has been found due to the formation of noncoplanar spin structures when the competition occurs among magnetocrystalline anisotropy, antiferromagnetic coupling, and ferromagnetic interaction at low temperature. The result of in situ Lorentz transmission electron microscopy cooling experiment at zero field indicates two shapes of domain walls containing vortexes coexisting simultaneously in the compound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.