Abstract
Inadvertent adjustments and malfunctions of programmable valves have been reported in cases in which patients have encountered powerful electromagnetic fields such as those involved in magnetic resonance imaging, but the potential effects of magnetic toys on programmable valves are not well known. The magnetic properties of nine toy magnets were examined. To calculate the effect of a single magnet over a distance, the magnetic flux density was directly measured using a calibrated Hall probe at seven different positions between 0 and 120 mm from the magnet. Strata II small (Medtronic Inc.), Codman Hakim (Codman & Shurtleff), and Polaris (Sophysa) programmable valves were then tested to determine the effects of the toy magnets on each valve type. The maximal flux density of different magnetic toys differed between 17 and 540 mT, inversely proportional to the distance between toy and measurement instrument. Alterations to Strata and Codman valve settings could be effected with all the magnetic toys. The distances that still led to an alteration of the valve settings differed from 10 to 50 mm (Strata), compared with 5 to 30 mm (Codman). Valve settings of Polaris could not be altered by any toy at any distance due to its architecture with two magnets adjusted in opposite directions. This is the first report describing changes in the pressure setting of some adjustable valves caused by magnetic toys in close contact. Parents, surgeons, neurologists, pediatric oncologists, and paramedics should be informed about the potential dangers of magnetic toys to prevent unwanted changes to pressure settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.