Abstract

Influence of variable magnetic field on Fe3O4–H2O heat transfer in a cavity with circular hot cylinder is investigated. Innovative numerical method is chosen, namely CVFEM. The effects of radiation parameter, Rayleigh and Hartmann numbers on hydrothermal characteristics are presented. Results indicated that Lorentz forces cause the nanofluid motion to decrease and augment the thermal boundary layer thickness. Temperature gradient augments with augmentation of radiation parameter, Rayleigh number, but it reduces with augmentation of Lorentz forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.