Abstract
We demonstrate a fast numerical method of theoretical studies of skyrmion lattice or spiral order in magnetic materials with Dzyaloshinsky-Moriya interaction. The method is based on the Fourier expansion of the magnetization combined with a minimization of the free energy functional of the magnetic material in Fourier space, yielding the optimal configuration of the system for any given set of parameters. We employ a Lagrange multiplier technique in order to satisfy micromagnetic constraints. We apply this method to a system that exhibits, depending on the parameter choice, ferromagnetic, skyrmion lattice, or spiral (helical) order. Known critical fields corresponding to the helical-skyrmion as well as the skyrmion-ferromagnet phase transitions are reproduced with high precision. Using this numerical method we predict new types of excited (metastable) states of the skyrmion lattice, which may be stabilized by coupling the skyrmion lattice with a superconducting vortex lattice. The method can be readily adapted to other micromagnetic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.