Abstract
A novel, rapid ionic liquid dispersive liquid–liquid microextraction (IL-DLLME) technique combined with magnetic retrieval (MR-IL-DLLME) has been developed and used to analyze five benzoylurea insecticides (BUs) in environmental water samples. This procedure was based on the magnetic retrieval of the ionic liquid using unmodified magnetic nanoparticles (MNPs). In this experiment, the fine ionic liquid droplets formed in aqueous samples functioned as an extractant for the extraction of BUs; after the extraction process was completed, Fe3O4 MNPs were added as a carrier to retrieve and separate the ionic liquid from the sample solution. After the supernatant was removed, the ionic liquid was desorbed using acetonitrile and subsequently injected directly into an HPLC system for analysis. The optimum experimental parameters are as follows: 20mg of Fe3O4 (20nm) as magnetic sorbents; 70μL of [C6MIM][PF6] as the extraction solvent; 300μL of acetonitrile as the disperser solvent; a vortex extraction time of 90s with the vortex agitator set at 2800rpm and no ionic strength. Under the optimized conditions, good linearity was obtained with correlation coefficients (r) greater than 0.9981. The repeatability and reproducibility of the proposed method were found to be good, and the limits of detection ranged from 0.05μgL−1 to 0.15μgL−1. The proposed method was then successfully used for the rapid determination of BUs in real water samples. The recoveries of five BUs at two spiked levels ranged from 79.8 to 91.7% with RSDs less than 6.0%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.