Abstract
Macrophages play a key role in the initial pathogenesis of kidney ischemia-reperfusion (I-R) injury, but the mechanism of their spatial and temporal recruitment from circulation remains uncertain. This study aimed to evaluate the feasibility of magnetic resonance imaging (MRI) for detecting intravenously administered superparamagnetic iron oxide (SPIO)-labeled macrophages in an experimental renal I-R mouse model. Unilateral kidney I-R mice were imaged with a 4.7-T MRI scanner before and after administration of SPIO-labeled macrophages (RAW 264.7). On MR images, adoptive transfer of SPIO-labeled macrophages in the acute phase (1–2 days after I-R) caused a band-shaped signal-loss zone resulting from macrophage infiltrations, in the outer medullary region of injured kidneys. MRI detection of macrophages homing to an injured kidney may facilitate early detection and investigation of the pathogenesis of acute kidney injury and be a strategy for determining the treatment of acute renal failure. From the Clinical EditorThis study evaluated the feasibility of magnetic resonance imaging for detecting superparamagnetic iron oxide (SPIO)-labeled macrophages in a renal ischemia-reperfusion mouse model. Similar strategies in humans may facilitate early detection and stratification of acute kidney injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nanomedicine: Nanotechnology, Biology and Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.