Abstract

The rectus extraocular muscle (EOM) pulleys constrain EOM paths. During visual fixation with head immobile, actively controlled pulleys are known to maintain positions causing EOM pulling directions to change by one-half the change in eye position. This pulley behavior is consistent with Listing's law (LL) of ocular torsion as observed during fixation, saccades, and pursuit. However, pulley behavior during the vestibulo-ocular reflex (VOR) has been unstudied. This experiment studied ocular counter-rolling (OCR), a static torsional VOR that violates LL but can be evoked during MRI. Tri-planar MRI was performed in 10 adult humans during central target fixation while positioned in right and left side down positions known to evoke static OCR. EOM cross-sections and paths were determined from area centroids. Paths were used to locate pulleys in three dimensions. Significant (P < 0.025) counter-rotational repositioning of the rectus pulley arrays of both orbits was observed in the coronal plane averaging 4.1 degrees (maximum, 8.7 degrees ) from right to left side down positions for the inferior, medial, and superior rectus pulleys. There was a trend for the lateral rectus averaging 1.4 degrees . Torsional shift of the rectus pulley array was associated with significant contractile cross-section changes in the superior and inferior oblique muscles. Torsional rectus pulley shift during OCR, which changes pulling directions of the rectus EOMs, correlates with known insertions of the oblique EOM orbital layers on rectus pulleys. The amount of pulley reconfiguration is roughly one-half of published values of ocular torsion during static OCR, an arrangement that would cause rectus pulling directions to change by less than one-half the amount of ocular torsion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.