Abstract

To determine whether cranial magnetic resonance imaging (MRI) is associated with deep brain stimulation (DBS) lead displacement or program interference. In vitro and in vivo studies were performed with the Itrel II implantable pulse generator (IPG) (Model 7424; Medtronic, Minneapolis, MN), Medtronic 3387 and 3389 leads, and a 1.5-T GE Horizon LX scanner (General Electric, Milwaukee, WI). In the in vivo study, two MRI volumetric data sets were compared for each of five patients undergoing staged, bilateral, DBS electrode placement in the thalamic or subthalamic nucleus. The data sets were acquired shortly after the initial implantation and during stereotactic planning for the second implantation (1-8 mo between acquisitions). An additional thalamotomy-treated patient was included as a control patient. Volumetric data were analyzed in a blinded manner, using AnalyzeAVW 3.0 software (Biomedical Imaging Resource, Mayo Clinic, Rochester, MN), to determine lead movement. In the in vitro study, the IPG and leads were positioned in the magnetic field in various configurations and were systematically assessed for movement. In vivo, the majority of measured deviations (88%) were within the standard error of measurement (1.4 mm). The maximal measured deviation was 3 mm (2% occurrence). Excellent tremor control with stimulation was demonstrated, which did not change after MRI. In vitro, the DBS leads demonstrated no deflection when introduced into the magnetic field. Similarly, no changes in IPG battery strength, lead impedance, or program settings were observed. MRI was not associated with significant DBS electrode movement or changes in clinical responses. Other IPG models and components and MRI scanners should be evaluated, to develop specific guidelines for MRI among individuals with implanted DBS systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.