Abstract
We analyze the phase diagram of a system of spin-1/2 Heisenberg antiferromagnetic chains interacting through a zig-zag coupling, also called zig-zag ladders. Using bosonization techniques we study how a spin-gap or more generally plateaux in magnetization curves arise in different situations. While for coupled XXZ chains, one has to deal with a recently discovered chiral perturbation, the coupling term which is present for normal ladders is restored by an external magnetic field, dimerization or the presence of charge carriers. We then proceed with a numerical investigation of the phase diagram of two coupled Heisenberg chains in the presence of a magnetic field. Unusual behaviour is found for ferromagnetic coupled antiferromagnetic chains. Finally, for three (and more) legs one can choose different inequivalent types of coupling between the chains. We find that the three-leg ladder can exhibit a spin-gap and/or non-trivial plateaux in the magnetization curve whose appearance strongly depends on the choice of coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.