Abstract

Some epiphytic species accumulate airborne particles and are suitable biological indicators for monitoring urban and industrial pollution. The species Tillandsia recurvata L. was studied as a monitor of air pollution in an urban area from Mexico. Individuals were collected in 25 sites which are exposed to different pollution degree and sources.The magnetic particle concentration, particle size, and mineralogy were determined and compared with chemical contents for all samples. The highest values of magnetic concentration dependent parameters were observed in industrial and heavy traffic sites (e.g., mass specific magnetic susceptibility of up to 171.5×10−8m3kg−1). In contrast, sites with low or without vehicular traffic reached low values (e.g., mass specific magnetic susceptibility of down to 1.8×10−8m3kg−1). The integrated magnetic analysis (King's and Day's plots, remanent magnetization parameters and thermomagnetic measurements) revealed the presence of ferromagnetic minerals, mostly magnetite-like with fine grain sizes (0.1–1μm) and subordinate presence of high-coercivity minerals. Selected samples were observed by SEM and EDS analysis and revealed the presence of Fe-rich particles, as well as trace elements, among others, As, Sb, S, Cr, Mo, V, Zn, Ba, Hg, Pt and Cu. Most of the elements detected by EDS were also quantified by ICP-MS measurements.Multivariate statistical analyses prove a high correlation between magnetic parameters and elements, as well as allow us classifying sites in clusters (fuzzy c-means clustering) with different pollution degree. These results demonstrate the usefulness of the species T. recurvata L. as a passive pollution monitor, with an affordable and immediate application. This species is abundant not only in Mexico, but also in other cities from America.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.