Abstract

We report on an approach to tailor the magnetic exchange in a conventional granular CoCrPt:SiO2 recording medium by irradiation with Co+ ions. Irradiation at low fluences enhances the intergranular exchange resulting in a narrowing of the switching field distribution (SFD). The modification of magnetic exchange coupling was evidenced by measuring the angular dependence of the switching field and is supported by an increase in the magnetic domain size. Further, micromagnetic simulations of a granular magnetic medium confirm the correlation between intergranular exchange and SFD. At high fluences, however, the irradiation damages lead to the degradation of the magnetic layer as magnetic anisotropy and saturation magnetization decrease. Ion irradiation simulations suggest that this is caused by strong intermixing at the grain and layer interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.