Abstract
Magnetization of a Ho2Fe14Si3 single crystal was measured in a steady magnetic field of up to 9 T and in pulsed fields of up to 60 T applied along the principal axes. Ho2Fe14Si3 is a ferrimagnet below TC = 480 K, has a spontaneous magnetic moment of about 8 μB/f.u. (at T = 4.2 K) and exhibits a large easy-plane magnetic anisotropy. There is also a certain anisotropy within the basal plane, the b axis [120] being the easy-magnetization direction. In fields applied along the a and b axes field-induced first-order phase transitions are observed at 29 T and at 22 T, respectively. Along the easy axis b we observe also an S-shaped anomaly at about 47 T, which does not correspond to a phase transition. A simple model predicts that the two observed first-order transitions are the only ones taking place in Ho2Fe14Si3; the magnetization should subsequently grow continuously and arrive at saturation at ∼100 T. This is in stark contrast to the behavior of the parent compound Ho2Fe17, where as many as three sequential first-order transitions are expected for H||b. The reason for the disparity is that the basal-plane anisotropy constant KHo is at least one order of magnitude smaller in Ho2Fe14Si3 than it is in Ho2Fe17.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.