Abstract

Abstract Strain-induced martensite (SIM) formation was evaluated upon cold-rolling of a 17.6 wt.%Mn-TRIP steel by means of magnetic measurements, X-ray diffraction, and high-resolution electron backscatter diffraction (EBSD). α′-martensite formation was observed to be dependent on the presence of prior e-martensite. Upon deformation, the coercivity of the ferromagnetic α′-martensite is characterized by strong magnetic shape anisotropy. Austenite (γ) reversion was evaluated by means of in situ magnetic measurements during continuous annealing. The experimental results were compared to thermodynamic simulations. It turned out that γ-reversion was not completed in the regime where a γ-single phase field is expected, which suggests the splitting of α′ → γ transformation into two stages. The Curie temperature of remaining α′-martensite was determined as being ∼620 °C. Magnetic properties presented an annealing time-dependence within the temperature range of 500–600 °C, suggesting long-range diffusional α′ → γ transformation. With the aid of electron channeling contrast image technique (ECCI), we noticed that the formation of γ-nanograins in the early stages of reversion is sufficient to induce strong magnetic shape anisotropy in this steel. After full austenitization at 800 °C, further in situ magnetic measurements were also used to track the magnetic response of the material upon controlled cooling. Athermal formation of α′-martensite within the prior athermal e-phase was clearly observed for temperatures lower than 100 °C. Using thermodynamic modeling we also calculated the start temperature for e-formation (Mse). Results showed that e-martensite is indeed expected to form before α′, which was confirmed in all cases by means of EBSD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.