Abstract
Recent theoretical studies have suggested that Kitaev physics and such effects as formation of a mysterious spin-liquid state can be expected not only in RuCl3 and iridates, but also in conventional $3d$ transition metal compounds. Using DC and AC magnetometry, thermodynamic and $^{23}$Na nuclear magnetic resonance measurements (NMR) we studied such a candidate material Na3Co2SbO6. A full phase diagram of Na3Co2SbO6 in a wide range of magnetic fields and temperatures is presented. The results demonstrate transformation of the antiferromagnetic structure under the external magnetic field, gradual development of the saturation phase, as well as evidence of gapped behavior in certain parts of the phase diagram
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.