Abstract
In this work, magnetic particles (MPs) are used as supports for the immobilization of biorecognition molecules for the detection of microcystins (MCs). In one approach, a recombinant protein phosphatase 1 (PP1) has been conjugated to MPs via coordination chemistry, and MC-LR detection has been based on the inhibition of the enzyme activity. In the other approach, a monoclonal antibody (mAb) against MC-LR has been conjugated to protein G-coated MPs, and a direct competitive enzyme-linked immunoparticle assay (ELIPA) has been then performed. Conjugation of biomolecules to MPs has been first checked, and after optimization, MC detection has been performed. The colorimetric PPIA with PP1-MP and the best ELIPA strategy have provided limits of detection (LOD) of 7.4 and 3.9 μg/L of MC-LR, respectively. The electrochemical ELIPA has decreased the LOD to 0.4 μg/L, value below the guideline recommended by the World Health Organisation (WHO). The approaches have been applied to the analysis of a cyanobacterial culture and a natural bloom, and MC equivalent contents have been compared to those obtained by conventional assays and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results have demonstrated the viability of the use of MPs as biomolecule immobilization supports in biotechnological tools for MCs monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.