Abstract
The noncontact magnetic manipulation of probe masses within the body is an area of research that has received substantial attention from the medical physics community, especially during the past three decades. The therapeutic and diagnostic possibilities arising from such technology include site-specific drug delivery within the central nervous system, advancement of techniques for navigation and selective catheterization of vessels within the cardiovascular and cerebrovascular systems, and the nonsurgical exploration of the alimentary and respiratory tracts. In this review, we examine the physical principles underlying in vivo magnetic manipulation systems, and catalog the various types of instrumentation used for such purposes to date. Thereafter, we evaluate the different methods of image-based localization used to identify the position of the probe within the body. Finally, we appraise an emerging technology known as nonlinear magnetic stereotaxis, a technique that permits minimally invasive access to difficult-to-approach parts of the brain. We close the review with a few comments on the directions for future work within this field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.