Abstract

We have investigated magnetic properties for reactor pressure vessel model alloys with variable Cu contents, subjected to neutron irradiation up to a fluence of 9 × 10 19 n cm − 2 . Unlike a monotonic increase of microhardness with neutron fluence, the major-loop coercivity decreases at a higher fluence and the decrease becomes larger for the alloy containing a higher amount of Cu. The measurements of first-order reversal curves (FORCs) for the high-Cu alloy show that the position of the FORC distribution peak shifts toward a lower coercivity just after neutron irradiation, followed by a slight increase, associated with the broadening along both the coercivity and interaction field axes. The results can be explained by the enhancement of magnetic inhomogeneity in a matrix due to Cu precipitation and an increasing magnetostatic interaction between local magnetic regions with different coercivity. The magnetic method using FORCs can be a possible technique which provides in-depth information on microstructural changes due to neutron irradiation, which is not obtained by measurements of a conventional major hysteresis loop.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.