Abstract

Physical property inversion techniques are the methods to reveal the internal structures of Earth’s lithosphere. In this study, we introduce an Occam-type inversion algorithm into a spherical coordinate system, and invert the magnetization based on the three-component magnetic anomalies. The synthetic model tests show that the inversion effects of the vertical components are relatively stable, while the anti-noise ability is strong. We apply the algorithm to a set of vertical component anomalies derived from the satellite magnetic field model and obtain Dabie orogen 3D magnetization distribution. Multiple magnetic sources are identified within the orogen and adjacent areas, and the related tectonic evolution processes are analyzed. The significant magnetization characteristics of the orogen can be associated with mantle upwelling caused by the Early Cretaceous lithospheric delamination, along with the partial melting of the mafic–ultramafic lower crust that had not participated in the delamination. The magnetic sources near the Mozitan–Xiaotian fault, and those located in the western Dabie area, are also restricted by Mesozoic and Jurassic–Cretaceous deep melt activities, respectively. The study provides evidence for the suture line position of the plate subduction in the deep lithosphere. Furthermore, the results display certain indications of mineralization activities in the middle–lower Yangtze Valley metallogenic belt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.