Abstract

A novel method for rectifying alternating magnetic fields is demonstrated using fluxons in semicircular Josephson junctions. An external magnetic field applied parallel to the dielectric barrier of the semicircular junction has opposite polarities at the ends of the junction and supports penetration of opposite polarity fluxons into the junction in the presence of a constant dc bias. When the direction of the field is reversed, flux penetration is not possible and a flux-free state exists in the junction. Thus, effective rectification of an alternating magnetic field can be achieved in semicircular Josephson junctions. This unique phenomenon is specific to this geometry and can be employed in rf SQUID magnetometers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.