Abstract

Within the continuum approach we study the equilibrium configurations of a cholesteric liquid crystal confined between two parallel plates, when a magnetic field is applied perpendicularly to the plates. We analyze the role of soft anchoring boundary conditions on magnetic-field-induced cholesteric-nematic transitions in a finite thickness cholesteric cell, treated to induce soft planar alignment. We study the stepwise behavior of cholesteric pitch as a function of the anchoring energy, the thickness of a layer, and the field strength. We analyze some kinds of soft anchoring potentials, including the case of degeneration of the easy axes. We show that the variation of the thickness or intrinsic pitch induces the the stepwise behavior of a pitch of the planar cholesteric structure, and the stepwise variations of the average tensor of diamagnetic susceptibility. The values of these jumps are determined by the anchoring energy. We find the values of critical parameters for the transitions between planar and confocal cholesteric states, and homeotropic nematic state. We show that the variation of the anchoring energy leads to change of the phase transition character; the conditions for hysteresis behavior are obtained. We show that for rather soft anchoring the confocal state is metastable, and the increase of a magnetic field leads to the direct transition between the planar cholesteric and homeotropic nematic phases. We also give a detailed derivation of the threshold and saturation properties of planar cholesteric to homeotropic nematic transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.