Abstract

We calculated the magnetic Compton profiles (MCPs) of Ni using density functional theory supplemented by electronic correlations treated within dynamical mean-field theory (DMFT). We present comparisons between the theoretical and experimental MCPs. The theoretical MCPs were calculated using the KKR method with the perturbative spin-polarized T-matrix fluctuation exchange approximation DMFT solver, as well as with the full potential linear augmented planewave method with the numerically exact continuous-time quantum Monte Carlo DMFT solver. We show that the total magnetic moment decreases with the intra-atomic Coulomb repulsion $U$, which is also reflected in the corresponding MCPs. The total magnetic moment obtained in experimental measurements can be reproduced by intermediate values of $U$. The spectral function reveals that the minority X$_2$ Fermi surface pocket shrinks and gets shallower with respect to the density functional theory calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.