Abstract
We have studied the preparation of magnetic graphitic carbon composites, which combine the adsorption properties of activated carbon with magnetic properties and properties intrinsic to graphite. The preparation method is efficient; it comprises modifying flax shive cellulose with citric acid to enhance the chelating ability of the flax shive cellulose matrix, impregnating the modified cellulose with iron chloride, and pyrolysis in an inert atmosphere to control the composition, morphology, specific surface, and porosity of hybrid carbon materials. The scenario of cellulose matrix pyrolysis was suggested using thermogravimetry. X-ray structural analysis was used to characterize the graphitic composites. The citric acid modification of cellulose helps to prepare a high-graphite (74%) carbon composite where the graphitization level of the graphite structure approaches the graphitization level of commercially available graphite at 700°С. Low-temperature N2 adsorption–desorption and ζ-potential measurements helped to suggest the adsorption mechanism for environmentally hazardous dyes. The greatest equilibrium adsorption of Methylene Blue (MB) and Methyl Orange (MO) dyes was 127.4 and 23.7 mg/g, respectively. The prepared composites can be used as adsorbents and fillers in polymer composite materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.