Abstract

The magnetic anisotropy of 10nm iron films deposited in an ultra high vacuum on the Si(001) surface and on the Si(001) over caped by 1.5nm layer of SiO2 was investigated. There is in-plane uniaxial magnetic anisotropy caused by oblique sputtering in the Fe films on a SiO2 buffer layer. The easy magnetization axis is always normal to the atomic flux direction but the value of the anisotropy field is different depending on the axial angle among sputtering direction and the substrate crystallographic axes. It is argued that the uniaxial magnetic anisotropy results from elongated surface roughness formation during film deposition. Several easy magnetization axes are found in Fe/Si(001) film without the SiO2 buffer layer. The mutual orientation of the main easy axes and Si crystallographic axes indicates that there is epitaxial growth of Fe/Si(001) film with the following orientation relative to the substrate: Fe[100] ∥Si[110]. The anisotropy energy of Fe/Si(001) film is estimated by simulation of angle dependence of remnant magnetization mr as the sum of the mr angle plot from uniaxial anisotropy (induced by oblique deposition) and the polar plot from biaxial magnetocrystalline anisotropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.