Abstract

ABSTRACT The rotation of a magnetized accreting neutron star (NS) in a binary system is described by its spin period and two angles: spin inclination α with respect to the orbital momentum and magnetic angle χ between the spin and the magnetic moment. Magnetospheric accretion spins the NS up and adjusts its rotation axis, decreasing α to nearly perfect alignment. Its effect upon the magnetic angle is more subtle and relatively unstudied. In this work, we model the magnetic angle evolution of a rigid spherical accreting NS. We find that the torque spinning the NS up may affect the magnetic angle while both α and χ significantly deviate from zero, and the spin-up torque varies with the phase of the spin period. As the rotation axis of the NS is being aligned with the spin-up torque, the magnetic axis becomes misaligned with the rotation axis. Under favourable conditions, magnetic angle may increase by Δχ ∼ 15°−20°. This orthogonalization may be an important factor in the evolution of millisecond pulsars, as it partially compensates the χ decrease potentially caused by pulsar torques. If the direction of the spin-up torque changes randomly with time, as in wind-fed high-mass X-ray binaries, both the rotation axis of the NS and its magnetic axis become involved in a non-linear random-walk evolution. The ultimate attractor of this process is a bimodal distribution in χ peaking at χ = 0° and χ = 90°.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.