Abstract

Varying the Al content, strongly influences the microstructure, magnetic and microhardness of additively manufactured Alx(CoFeNi) (x = 0, 10, 30) complex concentrated alloys (CCA). Compared to the single FCC phase of CoFeNi, the hierarchical FCC/L12+BCC/B2 heterostructure of heat treated Al10(CoFeNi) CCA displayed substantially improved saturation magnetization, Curie temperature and microhardness. However, there was no significant change in the properties of heat treated CoFeNi and Al30(CoFeNi) CCA. These findings can be rationalized via thermodynamic modelling of the phase stability. We have demonstrated the feasibility of exploiting additive manufacturing for rapidly screening and developing novel high-performance alloys for next generation rotating electrical machines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.