Abstract

Magnetic and fluorescence properties of chemically synthesized Ce:Gd-YAIG (Ce0.05GdxY2.95−xAl5−yFeyO12) nanocrystals have been investigated. The structural characterization by X-ray diffraction (XRD) shows that a garnet phase has been identified in samples with 0 ≤ x ≤ 2.95 and 0 ≤ y ≤ 3.0. When y = 0, only garnet peaks are observed for 0 ≤ x ≤ 2.5, while both garnet and perovskite phases are present for x > 2.5. It is found from XRD Rietveld analyses that the site occupancy of Fe3+ at the tetrahedral and octahedral sites in the garnet is independent of the amount of Y3+ substituted by Ce3+ and Gd3+ at the dodecahedral sites. The saturation magnetization for the sample with x = 0 and y = 3.0 is 4.35 emu/g, while that with x = 2.5 and y = 3.0 is 87.5 emu/g. When the Fe3+ composition y is varied from 0 to 3.0 at x = 2.5, the intensity of fluorescence at the emission wavelength ∼570 nm significantly decreases presumably due to absorption by Fe3+ that is increased in the crystal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.