Abstract

The generation of zero-mode Lamb waves in a magnetoelastic conductive plate with a thickness of 2d is considered at the constraint qt d < 1 using a radiation source model in the form of spaced apart conductors with alternating currents of opposite phases. It has been shown that, in contrast to bulk waves, Lamb waves are formed by the interference of the incident at angle φ and reflected waves under the condition sinφ > 1. Expressions are obtained for projections of displacements of symmetric and antisymmetric modes under the Joule effect, and expressions are given for projections of displacements under the Wiedemann effect. Diagrams are presented showing that the highest generation efficiency occurs in the first variant at the increased electrical conductivity of the plates. In the second case the highest generation efficiency appears at low electrical conductivity of the samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.