Abstract

An infant born with long-gap esophageal atresia has its esophagus separated into two pouches, and typically undergoes multiple open-chest surgeries for esophageal reconstruction. In this paper, we study a possible approach for less invasive correction of long-gap esophageal atresia. Our technique utilizes a magnet-tipped catheter with a piston on the end to push the esophageal pouch from the inside. The attractive magnetic force helps the catheter stretch the esophageal pouches, while the hydraulic piston prevents the magnet from applying too large force. The piston also enables estimation of the esophageal tension based on the hydraulic pressure measurement. We have built a prototype system and performed bench-level tests on an esophageal mock-up. A hydraulic dither is applied to the piston to average out seal friction, thereby improving the tension estimation performance. The bench-level tests demonstrate that the prototype bougienage system gives a reliable low-frequency estimate of the esophageal tension in real-time, and also enables longitudinal bougienage by a desired amount of load, e.g., 2N, for various gap sizes. This study provides a foundation for the next step of designing a system for use on actual patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.