Abstract

Multicollector ICP-MS has been used for the precise measurement of variations in the isotopic composition of the isotopic standard of magnesium (SRM980) provided by the National Institute of Standards and Technology (Gaithersburg, MD, USA). The SRM980 consists of metal chips weighing between 1 and 50 mg and each unit delivered by the National Institute of Standards and Technology corresponds to a bottle containing about 0.3 g. Height units were analysed. Variations in sample 25Mg/24Mg, and 26Mg/24Mg ratios are expressed as δ25Mg and δ26Mg units, respectively, which are deviations in parts per 103 from the same ratio in a standard solution. The differences in δ25Mg and δ26Mg of the SRM980 are up to 4.20 and 8.19‰, respectively, while the long-term repeatability of δ25Mg and δ26Mg are 0.09 and 0.16‰, respectively, at 95% confidence. However, when plotted in a three-isotope diagram, all the data fall on a single mass fractionation line. Overall limits of error of the SRM980 reported here fall within the previously reported overall limits of error. The isotopic heterogeneity not only corresponds to differences among units but has been found at the chip-size level. This result, due to the precision of the MC-ICP-MS technique, makes the SRM980 inappropriate for the international isotopic standard of magnesium. The SRM980 can still be used to report the excess of 26Mg, which is defined by the deviation from the mass-dependent relationship between 25Mg/24Mg, and 26Mg/24Mg ratios. Two large batches (around 10 g of Mg in each) of pure Mg solutions (in 0.3 M HNO3) have been prepared and characterised. These 2 solutions (DSM3 and Cambridge 1) are suitable reference material because they are immune to heterogeneity. DSM3 and Cambridge 1 are isotopically different (by 1.3‰ per u) and are available upon request from the first author. In addition, DSM3 has an isotopic composition very similar to the Mg-isotopic composition of carbonaceous chondrites (Orgueil and Allende). Because of the lack of heterogeneity and the cosmochemical and geochemical significance of DSM3, we urge the use of DSM3 as the primary isotopic reference material to report Mg-isotopic variations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.