Abstract

The hydrous magnesium carbonates, nesquehonite (MgCO 3·3H 2O) and dypingite (Mg 5(CO 3) 4(OH) 2·5(H 2O)), were precipitated at 25 °C in batch reactors from aqueous solutions containing 0.05 M NaHCO 3 and 0.025 M MgCl 2 and in the presence and absence of live photosynthesizing Gloeocapsa sp. cyanobacteria. Experiments were performed under a variety of conditions; the reactive fluid/bacteria/mineral suspensions were continuously stirred, and/or air bubbled in most experiments, and exposed to various durations of light exposure. Bulk precipitation rates are not affected by the presence of bacteria although the solution pH and the degree of fluid supersaturation with respect to magnesium carbonates increase due to photosynthesis. Lighter Mg isotopes are preferentially incorporated into the precipitated solids in all experiments. Mg isotope fractionation between the mineral and fluid in the abiotic experiments is identical, within uncertainty, to that measured in cyanobacteria-bearing experiments; measured δ 26Mg ranges from −1.54‰ to −1.16‰ in all experiments. Mg isotope fractionation is also found to be independent of reactive solution pH and Mg, CO 3 2−, and biomass concentrations. Taken together, these observations suggest that Gloeocapsa sp. cyanobacterium does not appreciably affect magnesium isotope fractionation between aqueous fluid and hydrous magnesium carbonates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.