Abstract
Omission of Mg2+ from the incubation buffer results in a six- to eightfold increase in [3H]inositol-1-phosphate ([3H]Ins-1-P) accumulation in primary cultures of cerebellar granule cells at 7-9 days in vitro. This increase is reversed by low concentrations of 2-amino-5-phosphono-valerate (APV), a result indicating that the absence of Mg2+ facilitates the activation of a specific receptor by the endogenous excitatory amino acids (presumably L-glutamate and L-aspartate) released from the granule cells. The absence of Mg2+ also potentiates the action of exogenously applied N-methyl-D-aspartate (NMDA), L-glutamate, L-aspartate, and kainate. In contrast, the action of quisqualate is virtually unaffected by Mg2+ and is resistant to APV inhibition. Addition of the depolarizing agent veratridine enhances the accumulation of [3H]Ins-1-P also in Mg2+-containing buffer. The action of veratridine is antagonized by APV, a result suggesting that, under depolarized conditions, the NMDA receptor can be activated by the endogenously released excitatory amino acids, despite the presence of Mg2+. Accordingly, in the presence of Mg2+, veratridine potentiates the action of exogenously applied NMDA but does not facilitate the action of quisqualate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.