Abstract
Multi-stage fluid influx has led to the volumetrically important occurrence of granite-related tourmalines at the Laojunshan metamorphic massif in Southeast Asia, which exhibits variable deformed structures and decomposition textures. These include disseminated tourmaline porphyroclasts (type-I), crosscutting tourmaline-quartz veins (type-II) and tourmaline veinlets (type-III). The chemical variations of these three types of tourmalines reveal a source transition from early boron-rich melt to late hydrothermal fluid, accompanying with variable fluid-rock interaction. Hydrothermal tourmalines are characterized by higher Mg/(Mg + Fe) ratios, lower Na/(Na + Ca) ratios, more pronounced positive Eu anomalies, higher Sr and heavy rare earth element (HREE) concentrations, and lower Li, Nb, Zr, Hf, and light rare earth element (LREE) concentrations compared to magmatic tourmalines. The tourmalines exhibit δ11B values ranging from −13 to −7.9‰ for type-I, from −15.5 to −7.5‰ for type-II, and from −18.6 to −11.6‰ for type-III. This variation is mainly due to multiple fluid exsolution, Rayleigh fractionation and the mixing of two isotopically distinct sources. UPb dating results of magmatic zircons from two tourmaline-bearing gneisses reveal the ages of magma emplacement and crystallization from 445 to 420 Ma. Magmatic-hydrothermal fluids released from Silurian peraluminous granites are responsible for the formation of the disseminated type-I tourmalines. Further hydraulic fracturing during exhumation led to the formation of the tourmaline-quartz veins (type-II) and the tourmaline veinlets (type-III), possibly from Cretaceous granitic magma-derived fluids that interacted with metamorphic rocks. The decreasing grain size resulted from decomposition and cataclasis coupled with the overpressured fluids weakening the host rocks along fractures and eventually promoting the deformation during exhumation of the metamorphic massif. The chemical and isotopic compositions of tourmaline suggest that the oxidized conditions possibly through fluid boiling and fluid-rock interaction may promote the regional Sn-mineralization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.